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Prompt γγ production in hadron colliders 

  Prompt photons = emitted from quarks in hard scattering processes, as 
opposed to coming from neutral hadron decays (reducible background in 
cross section measurements) 

  The cleanest probe of QCD ⎯ elementary particles, can be measured 
with high precision in modern calorimeters 

  Probe for searching new phenomena ⎯ γγ is signature of possible 
heavy resonance decays 
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Prompt γγ production in hadron colliders 

  Measurements of cross sections are needed to test perturbative 
(and non-perturbative) QCD predictions in order to improve our 
understanding of the production mechanism 

  Improvements of searches for new resonances require a good 
understanding of the QCD production mechanism (irreducible 
background in resonance searches) 

  Tevatron and LHC:  ideal places to conduct γγ measurements ⎯ 
well performing colliders, high precision detectors 
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Born:  Dominant 
at the Tevatron 

“Box”:  Dominant 
at the LHC 

Hard QCD (“direct” γγ production): 

Prompt γγ production in hadron colliders 

Brems:  Suppressed by 
the isolation requirement 
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Born:  Dominant 
at the Tevatron 

“Box”:  Dominant 
at the LHC 

Hard QCD (“direct” γγ production): 

Possible heavy resonance decays: 

€ 

H →γγ

€ 

G∗ →γγ

€ 

W →γγ + X
Low-mass Higgs boson 

(most sensitive channel at LHC for mH<125 GeV/c2) 
Extra dimensions SUSY 

Prompt γγ production in hadron colliders 

Brems:  Suppressed by 
the isolation requirement 

Better control on these processes 
[σ ~ O(10 pb) at the Tevatron] 

 More sensitive searches for such processes 
[σ×BR ~ O(1 fb) at the Tevatron] 
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•  The pQCD cross section is divergent when q and γ are collinear  Non-perturbative feature 
of the theory, handled with phenomenological “fragmentation functions” derived e.g. from the 
VMD model [L. Bourhis et al., Eur. Phys. J. C 2, 529 (1998)]. 

Aspects of the theory:  Fragmentation 

Unresolved 
within isolation 
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•  The pQCD cross section is divergent when q and γ are collinear  Non-perturbative feature 
of the theory, handled with phenomenological “fragmentation functions” derived e.g. from the 
VMD model [L. Bourhis et al., Eur. Phys. J. C 2, 529 (1998)]. 

•  Fragmentation contributions can be suppressed by 
  PT(γγ) < M(γγ) 
  experimental photon isolation requirements 

€ 

ET
iso = ET

partons or hadrons
within R< 0.4

∑ − ETγ

Aspects of the theory:  Fragmentation 
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Aspects of the theory:  Resummation 
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+ + + … The cross section for 

contains singular terms at                     and M(γγ) ≠ 0 of the form 
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PT γγ( ) →0
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Aspects of the theory:  Resummation 
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P T γγ( )( )

€ 

n =1,...∞     m = 0,...,2n −1or 

+ + + … The cross section for 

contains singular terms at                     and M(γγ) ≠ 0 of the form 

+ + + … Need to add 
soft gluon emission: 

•  Two ways of doing this: 
  Approach the                   limit with an analytically calculated cross section 

derived from the sum of the singular terms for all n and m = 1,2,3 (next-to-next-
to-leading log accuracy, NNLL), which is then smoothly matched to the 
perturbative cross section at high PT(γγ) 

  Use parton showering to add gluon radiation in a Monte Carlo simulation 
framework which effectively resums the cross section for all n and m = 1 
(leading-log accuracy, LL) 

€ 

PT γγ( ) →0

€ 

PT γγ( ) →0
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Theoretical predictions 

•  DIPHOX: Fixed-order NLO calculation including non-perturbative fragmentation 
      [T. Binoth et al., Phys. Rev. D 63,114016 (2001)]	



•  RESBOS: Low-PT analytically resummed calculation matched to high-PT NLO 
       [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]	



•  PYTHIA LO parton-shower calculation 
      [T.Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001)] 
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Previously published measurements 

•  CDF publication in Run II with 207 pb-1. 
•  Event selection: pT1(2)>14(13) GeV, |η1,2|<0.9, ΔR(γ,γ)>0.3, ET

iso<1 GeV. 

•  PT(γγ)>25 GeV region in data dominated by events with PT(γγ)>M(γγ) and  
 Δφ(γ,γ)<π/2  potentially large fragmentation contributions. 

PRL 95, 022003 (2005)  PRD 76, 013009 (2007) 



•  D0 publication in Run II with 4.2 fb-1 
•  pT1(2)>21(20) GeV/c,  |η1,2|<1,  ΔR(γ,γ)>0.4,  (Etot

R=0.4 – Eem
R=0.2)/ Eem

R=0.2 <0.1,  PT(γγ)<M(γγ) 
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•  Good agreement between data 
and RESBOS for Mγγ>50 GeV/c2 

•  Need for a resummed 
calculation 

•  Data spectrum harder 
than predicted 

(*) Overall normalization uncertainty (7.3%) not included in data error bars. 

Previously published measurements 

•  Observable nearly insensitive 
to experimental effects 

•  Supports conclusion from PT
(γγ) measurement 

PLB 690, 108 (2010)  

Here the PYTHIA prediction uses only matrix element based production of photon pairs 



•  Preliminary ATLAS results using 37 pb-1, CERN-PH-EP-2011-08, EPS-HEP2011 
•  Event selection: pT1(2)>16 GeV, |η1,2|<2.37, ΔR(γ,γ)>0.4, Et

iso<3 GeV. 

•  Confirm the discrepancies observed at the Tevatron 15 

Recent measurements at the LHC 
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Recent measurements at the LHC 
•  Preliminary CMS results using 36 pb-1, CMS QCD 10-035, EPS-HEP2011, APS-DPF2011 
•  Event selection: pT1(2)>23(20) GeV, |η1,2|<2.5, ΔR(γ,γ)>0.45 

•  Similar conclusions, large data – DIPHOX discrepancy for Δφ(γ,γ)<π/2 
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Data set 

5.4 fb-1 

Many thanks to the Accelerator Division! 

Jun’09 
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CDF detector overview 

  Tracking: 
    → Drift chamber, |η|<1 
   → Silicon microstrip tracker, |η|<2 
        allows also for precise vertex 
        reconstruction 

  Calorimeter: 
   → Split in EM (scintillator – lead) 
        and HAD (scintillator – iron) 
        sampling devices, |η|<1.1 
        (central), 1.1<|η|<3.6 (plug) 

  Muon system: 
   → Drift chambers outside 
       calorimeter, |η|<1.5 
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CDF detector overview 

  Tracking: 
    → Drift chamber, |η|<1 
   → Silicon microstrip tracker, |η|<2 
        allows also for precise vertex 
        reconstruction 

  Calorimeter: 
   → Split in EM (scintillator – lead) 
        and HAD (scintillator – iron) 
        sampling devices, |η|<1.1 
        (central), 1.1<|η|<3.6 (plug) 

  Muon system: 
   → Drift chambers outside 
       calorimeter, |η|<1.5 

  Central electromagnetic calorimeter (|η|<1.1): 
   → Tower segmentation:  Δη × Δφ ≅ 0.1 × 15o 

€ 

σ(E) /E =13.5%/ E(GeV) ⊕1.5%   → Resolution: 
   → Proportional chambers (CES) at 6 rad. lengths depth (shower max) give location 
        and 2D profile of the EM showers (position resolution ∼2 mm for 50 GeV γ) 



Photon identification and event selection 

  Used dedicated diphoton triggers with optimized efficiency 

  Photons were selected offline from EM clusters, reconstructed within a cone of radius R=0.4 
in the η–φ plane, and requiring: 

•  Fiducial to the central calorimeter: |η|<1.1 

•  ET ≥ 17 GeV (1st γ in the event), 15 GeV (2nd γ) 

•  Isolated in the calorimeter:  Ical = Etot(R=0.4) - EEM(R=0.4) ≤ 2 GeV 

•  Low HAD fraction:  EHAD/EEM ≤ 0.055 + 0.00045×Etot/GeV 

•  At most one track in cluster with  pT
trk ≤ 1 GeV/c + 0.005×ET

γ/c 

•  Shower profile consistent with predefined patterns:  χ2
CES ≤ 20 

•  Only one high energy CES cluster: ET of 2nd CES cluster ≤ 2.4 GeV + 0.01× ET 20 

γ

CP2: pre-shower CES: shower maximum profile 

EM Cal HAD Cal 

Isolation cone:  
R=0.4 rad 

Avoids divergence in fixed-order calculations 

Imply that 

ΔR(γ,γ) ≥ 0.4 
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Background subtraction 

Jets misidentified as photons: dijet and γ+jet  

  Fluctuations in jet fragmentation to leading π0 or η0 meson (π0,η0γγ) 
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Background subtraction 

Jets misidentified as photons: dijet and γ+jet  

  Fluctuations in jet fragmentation to leading π0 or η0 meson (π0,η0γγ) 

  Normalization and shape estimated from MC using track isolation: 

  Sensitive only to underlying event and jet fragmentation (for fake γ), 
           immune to multiple interactions (due to z-cut) and calorimeter leakage 

  Good resolution in low-ET region, where background is most important 

  Uses charged particles only 

NEW 
technique! 
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Background subtraction 

Signal 
Background 

Jets misidentified as photons: dijet and γ+jet  

  Fluctuations in jet fragmentation to leading π0 or η0 meson (π0,η0γγ) 

  Normalization and shape estimated from MC using track isolation: 

  Sensitive only to underlying event and jet fragmentation (for fake γ), 
           immune to multiple interactions (due to z-cut) and calorimeter leakage 

  Good resolution in low-ET region, where background is most important 

  Uses charged particles only 

Substantially different shape of signal 
and background Itrk distributions can be 
used to characterize true and fake γ 

NEW 
technique! 
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Signal-background discrimination using the track isolation 

For a single γ, a weight can be defined to characterize it as signal or background: 

   ε = 1 (0) if Itrk < (≥) 1 GeV/c 

   εs = signal efficiency for Itrk < 1 GeV/c 

   εb = background efficiency for Itrk < 1 GeV/c 
Both modeled by 



•  Use the track isolation cut for each photon to compute a per-event weight under the 
different hypotheses (γγ, γ+jet and dijet): 

Both photons fail 

Leading fail, trailing passes 

Leading passes, trailing fails 

Both photons pass 

E = 

•  For instance, if leading passes/trailing fails, the event weight is: 

•  Estimated number of prompt diphoton events bin-by-bin is 
given by the sum of γγ weights: 
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Background subtraction: 4×4 matrix method 
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Background subtraction: 4×4 matrix method 

Systematic uncertainties:   
•  Δεs = ±3.5% 
•  Δεb = ±6% for ET < 150 GeV 
  Leading sources of systematic  

 uncertainty in the cross section 

T 
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Signal fraction 

€ 

Signal fraction =
Nγγ

Ndata
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Signal fraction 

€ 

Signal fraction =
Nγγ

Ndata

•  Average ∼40% 
•  Better at high mass: 
   60-80% for M(γγ) ∼80-150 GeV/c2 

   ∼80% for M(γγ )>150 GeV/c2 
•  Better at high PT(γγ): 
   ∼70% for pT(γγ) >100 GeV/c 
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Acceptance × efficiency 

Number of events with two reconstructed EM clusters passing all cuts 

Number of events with two generator-level photons passing kinematic and isolation cuts 

•  Defined as: 

•  Estimated using detector- and trigger-simulated and 
reconstructed PYTHIA events 

•  Procedure iterated to match PYTHIA to the data 

•  Corrected to parton level for comparison with NLO theory 
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Acceptance × efficiency 

Number of events with two reconstructed EM clusters passing all cuts 

Number of events with two generator-level photons passing kinematic and isolation cuts 

Uncertainties in the efficiency estimation: 
•  3% from material uncertainty 
•  1.5% from the EM energy scale 
•  3% from trigger efficiency uncertainty 
•  6% (3% per photon) from underlying event (UE) correction 

Average efficiency ~40% 
Total systematic uncertainty: ~7-15% 
Comparable statistical uncertainty 

•  Defined as: 

•  Estimated using detector- and trigger-simulated and 
reconstructed PYTHIA events 

•  Procedure iterated to match PYTHIA to the data 

•  Corrected to parton level for comparison with NLO theory 
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Experimental systematic uncertainties 

•  Total systematic uncertainty ∼15-30%, smoothly varying with the kinematic variables considered 
•  Main source is background subtraction, followed by overall normalization (efficiencies: 7%; 

integrated luminosity: 6%; UE correction: 6%) 



32 

•  DIPHOX: Fixed-order NLO calculation including non-perturbative fragmentation 
      [T. Binoth et al., Phys. Rev. D 63,114016 (2001)]	



•  RESBOS: Low-PT analytically resummed calculation matched to high-PT NLO 
       [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]	



•  PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied) 
      [T.Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001)] 

Theoretical predictions 
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Theoretical predictions 

•  DIPHOX: Fixed-order NLO calculation including non-perturbatve fragmentations 
      [T. Binoth et al., Phys. Rev. D 63,114016 (2001)]	



•  RESBOS: Low-PT resummed calculation smoothly matched to high-PT NLO 
       [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]	



•  PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied) 
      [T.Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001)] 
      Two separate calculations, one involving (a – b) only (“PYTHIA γγ”) 
      and one involving (a – d) (“PYTHIA γγ+γj”), are compared with the data 

NEW 
calculation! 
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Theoretical predictions 

•  DIPHOX: Fixed-order NLO calculation including non-perturbatve fragmentations 
      [T. Binoth et al., Phys. Rev. D 63,114016 (2001)]	



•  RESBOS: Low-PT resummed calculation smoothly matched to high-PT NLO 
       [T. Balazs et al., Phys. Rev. D 76, 013008 (2007)]	



•  PYTHIA 6.2.16 LO parton-shower calculation (no k-factor applied) 
      [T.Sjöstrand et al., Comp. Phys. Comm. 135, 238 (2001)] 
      Two separate calculations, one involving (a – b) only (“PYTHIA γγ”) 
      and one involving (a – d) (“PYTHIA γγ+γj”), are compared with the data 

Contributions from double radiation in dijet events were examined 
and found small (~3% of the total)  not included in this analysis 

NEW 
calculation! 
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Matrix element and radiation contributions in PYTHIA 

Initial state radiation (ISR) makes the PT(γγ) and Δφ(γ,γ) spectra of PYTHIA harder 



  Experimental kinematic and isolation cuts are also applied to all 
theoretical calculations compared with the data: 

•  Central photons required: |y| < 1.1 

•  ET ≥ 17 GeV (1st γ in the event), 15 GeV (2nd γ) 

•  Isolated in the calorimeter: Ical = Etot(R=0.4) - EEM(R=0.4) ≤ 2 GeV 
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Imply that 

ΔR(γ,γ) ≥ 0.4 

Theoretical predictions 
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Imply that 

ΔR(γ,γ) ≥ 0.4 

Theoretical predictions 

Applied at the parton level 
in DIPHOX and RESBOS 
 can only approximate 
the experimental isolation 
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theoretical calculations compared with the data: 
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•  ET ≥ 17 GeV (1st γ in the event), 15 GeV (2nd γ) 

•  Isolated in the calorimeter: Ical = Etot(R=0.4) - EEM(R=0.4) ≤ 2 GeV 
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Imply that 

ΔR(γ,γ) ≥ 0.4 

Theoretical predictions 

•  NLO theoretical uncertainties: 

•  PDFs: 3-6%; use 44 eigenvectors from CTEQ6.1M 

•  Renormalization/factorization/fragmentation scales: ~10-20% 
depending on the observable; all scales simultaneously varied 
by ×2 up and down 

Applied at the parton level 
in DIPHOX and RESBOS 
 can only approximate 
the experimental isolation 



  Experimental kinematic and isolation cuts are also applied to all 
theoretical calculations compared with the data: 

•  Central photons required: |y| < 1.1 

•  ET ≥ 17 GeV (1st γ in the event), 15 GeV (2nd γ) 

•  Isolated in the calorimeter: Ical = Etot(R=0.4) - EEM(R=0.4) ≤ 2 GeV 
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Imply that 

ΔR(γ,γ) ≥ 0.4 

Theoretical predictions 

•  NLO theoretical uncertainties: 

•  PDFs: 3-6%; use 44 eigenvectors from CTEQ6.1M 

•  Renormalization/factorization/fragmentation scales: ~10-20% 
depending on the observable; all scales simultaneously varied 
by ×2 up and down 

Applied at the parton level 
in DIPHOX and RESBOS 
 can only approximate 
the experimental isolation 

Total cross section (pb) 
Data 12.5 ± 0.2stat ± 3.7syst 

RESBOS 11.3 ± 2.4syst 

DIPHOX 10.6 ± 0.6syst 

PYTHIA γγ+γj 9.2 
PYTHIA γγ 5.0 
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Kinematic variables 

€ 

M = pγ1
µ + pγ 2

µ( )2
  

€ 

PT =   p γ1 +
 p γ2( ) −  p γ1 +

 p γ2( ) • ˆ z  

  

€ 

Yγγ = tanh−1

 p γ1 +
 p γ 2( ) • ˆ z 

 p γ1 +
 p γ1

€ 

Δφ = φγ1 −φγ 2  modπ

€ 

z =
pTγ

<

pTγ2
>

€ 

cosθ =
2pTγ1pTγ 2 sinh yγ1 − yγ2( )

M M 2 + PT
2

€ 

{
€ 

cosθ →  tanh
yγ1 − yγ2

2
≈ 0  PT << M( )

€ 

cos2θ →  
4 pTγ1pTγ2

pTγ1 + pTγ 2( )2 ≈1  PT >> M( )

Cosine of the leading photon polar angle in the 
Collins-Soper frame (γγ rest frame with the 
polar axis bisecting the angle between the 
colliding hadrons) 
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Differential cross sections 

•  Good agreement between data 
and theory for Mγγ>30 GeV/c2 

•  Resummation important 
for PT(γγ) > 20 GeV/c 

•  Fragmentation causes 
excess of data over theory 
for PT(γγ) = 20 – 50 GeV/c 
(the “Guillet shoulder”) 

•  Resummation important for 
Δφγγ > 2.2 rad 

•  Data spectrum harder than 
predicted 

PYTHIA γγ fails both in scale and in shape in all spectra 
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Data-to-theory cross section ratios 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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Data-to-theory cross section ratios 

Resummation 

Resummation 

Fragmentation 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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Total 
Direct 
1-frag 
2-frag 

ET
iso < 2 GeV 

ET
iso < 10 GeV 

A closer look at fragmentation:  DIPHOX isolation study 
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A closer look at fragmentation:  DIPHOX isolation study 

iso < 2 GeV 
iso < 2 GeV iso < 2 GeV 

Fragmentation strength is missing from the DIPHOX calculation 
possibly because of the approximate application of the isolation 
requirement at the parton level 
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Differential cross sections 

•  Good agreement between data 
and RESBOS 

•  Good agreement between data 
and DIPHOX, except for 
0.7<z<0.8 

•  Good agreement 
between data and 
theory 

•  Good agreement between 
data and theory, except for 

    |cosθ*|→1 
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Data-to-theory cross section ratios 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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Data-to-theory cross section ratios 

Resummation 
Fragmentation 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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Differential cross sections for PT(γγ)<M(γγ) 

•  Dominated by direct  
production with low PT 
from gluon ISR 

•  Case kinematically 
similar to a Higgs boson 
produced by gluon fusion 

•  But a Higgs boson from 
vector boson fusion or 
vector boson associated 
production may have 
large PT 

H 

H 

W,Z 

W,Z 
H W,Z 

W,Z 
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Differential cross sections for PT(γγ)<M(γγ) 

H 

H 

W,Z 

W,Z 
H W,Z 

W,Z 

Cut only ~1.5% of ggH events 
@ mH = 115 GeV/c2 

Cut ~20% of the VH+VBF events, i.e. 
~6% of the signal @ mH = 115 GeV/c2 

•  Dominated by direct  
production with low PT 
from gluon ISR 

•  Case kinematically 
similar to a Higgs boson 
produced by gluon fusion 

•  But a Higgs boson from 
vector boson fusion or 
vector boson associated 
production may have 
large PT 
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Differential cross sections for PT(γγ)<M(γγ) 

•  Good agreement between data 
and theory 

•  “Shoulder” in data for 
PT(γγ) = 20 – 50 GeV/c 
signifcantly reduced 

•  Discrepancies between data 
and theory for Δφγγ < 1.7 rad 
reduced 
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Data-to-theory cross section ratios for PT(γγ)<M(γγ) 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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•  Good agreement between 
data and RESBOS 

•  Good agreement between 
data and DIPHOX, except 
for 0.7<z<0.8 

•  Good agreement between 
data and theory 

•  Good agreement between 
data and theory 

Differential cross sections for PT(γγ)<M(γγ) 
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Data-to-theory cross section ratios for PT(γγ)<M(γγ) 

DIPHOX 

RESBOS 

PYTHIA 

NB: Vertical axis scales are not the same  
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Differential cross sections for PT(γγ)>M(γγ) 

This case involves strong contributions from Compton-like scattering 
and fragmentations producing photon pairs with small ΔR(γ,γ) 
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Differential cross sections for PT(γγ)>M(γγ) 

•  Theory underestimates the data 
at the peak Mγγ ∼ 30 GeV/c2 

•  Theory underestimates the 
data for PT(γγ) < 90 GeV/c 

•  Theory underestimates 
the data for Δφγγ < 1.7 rad 
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•  Theory underestimates the 
data 

•  Theory underestimates the 
data 

Differential cross sections for PT(γγ)>M(γγ) 

•  Theory underestimates the 
data 
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Summary and conclusions 

  This is the most complete measurement of prompt diphoton production 
cross sections conducted so far ⎯ see PRL [107, 102003 (2011); arXiv:
1106.5123] and PRD [D 84, 5, 052006 (2011); arXiv:1106.5131] references. 

  The measurements are compared to state-of-the-art theoretical predictions 
such as DIPHOX,  RESBOS, and PYTHIA. Overall agreement between data 
and theory, within known limitations, is observed. 

  Resummation matched with NLO pQCD calculations works well at low PT(γγ) 
(< 20 GeV/c) and large Δφγγ (> 2.2 rad). 

  Fragmentation appears to be not under good control in sensitive kinematic 
regions [M(γγ) < 60 GeV/c2, 20 GeV/c < PT(γγ) < 50 GeV/c, Δφγγ < 1 rad]. 

  The poor theoretical description of data regions sensitive to fragmentation 
raises a caveat:  More sophisticated isolation methods are required to further 
reduce fragmentation contributions 

  Parton-shower Monte Carlo provides a description of the data competitive 
with full NLO calculations by including ISR and FSR photons, which add 
some NLO features to the calculation as well as an approximation of 
fragmentation. 
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Impact on searches of undiscovered particles 

  The success of parton-shower Monte Carlo is important for the search of a low-
mass Higgs boson and of new physics: 

•  Provides a reliable background model for these searches in the framework 
of realistic event representation suitable for simulation of collider 
experiments 

•  Can be used in the Higgs       γγ search based on a multivariate analysis 
that exploits the full γγ event information ⎯ all kinematic variables that can 
help discriminate Higgs boson decays from QCD γγ events:  see D0’s PRL 
(arXiv:1107.4587) reference 

•  Can also be used in searches of new physics in the mass range where 
data are not enough to model the QCD background by data-driven 
methods 
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Impact on searches of undiscovered particles 

  The success of parton-shower Monte Carlo is important for the search of a low-
mass Higgs boson and of new physics: 

•  Provides a reliable background model for these searches in the framework 
of realistic event representation suitable for simulation of collider 
experiments 

•  Can be used in the Higgs       γγ search based on a multivariate analysis 
that exploits the full γγ event information ⎯ all kinematic variables that can 
help discriminate Higgs boson decays from QCD γγ events:  see D0’s PRL 
(arXiv:1107.4587) reference 

•  Can also be used in searches of new physics in the mass range where 
data are not enough to model the QCD background by data-driven 
methods 

  CDF recently measured a limit on H       γγ using a mass scan of 7 fb-1 of data: 

     http://theory.fnal.gov/jetp/talks/FNAL_wc_Hgamgam.ppt  

     The sensitivity of this search can be significantly improved by updating the 
search using a multivariate analysis based on the PYTHIA γγ+γj model of the 
QCD background. 


